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A B S T R A C T

Studies suggest that people who cheat on a test overestimate their performance on future tests. Given that erro-
neous monitoring of one's own cognitive processes impairs learning and memory, this study investigated whether
cheating on a test would harm monitoring accuracy on future tests. Participants had the incentive and opportu-
nity to cheat on one (Experiments 1, 2, and 3, with N = 90, 88, and 102, respectively) or two (Experiment 4,
N = 214) of four general-knowledge tests. Cheating produced overconfidence in global-level performance pre-
dictions in Experiment 2 (Cohen's d ≥ 0.35) but not in Experiments 1 or 4. Also, cheating did not affect the ab-
solute or relative accuracy of item-level performance predictions in Experiments 3 or 4. A Bayesian meta-analysis
of all experiments provided evidence against cheating-induced overconfidence in global- and item-level predic-
tions. Overall, our results demonstrate that people who cheat on tests accurately predict their performance on
future tests.

1. Introduction

Cheating on tests is a pervasive problem in high school and college
classrooms. Several large-scale studies have reported that more than
60% of high school students and more than 30% of college students ad-
mitted to test cheating (McCabe, Butterfield, & Trevino, 2012). Test
cheating has significant adverse consequences. Cheating students may
receive undeservedly high grades and unfair advantages over those who
do not cheat (Bretrag, 2016). Cheating can also undermine attempts to
foster students’ ethical responsibility, and can damage institutional rep-
utation (Passow, Mayhew, Finelli, Harding, & Carpenter, 2006).
Also important, cheating has a detrimental impact on learning because
students miss valuable learning opportunities (McDaniel, Anderson,
Derbish, & Morrisette, 2007). For instance, Arnold (2016) reported
that cheating on online practice tests was associated with low perfor-
mance on final tests. Furthermore, cheating on tests prevents teachers
from giving useful feedback to students and tailoring instruction to stu-
dent needs (Passow et al., 2006).

Cheating's effects on metacognitive monitoring, however, have re-
mained largely unexplored. Metacognitive monitoring refers to people's
knowledge of their own cognitions, and particularly their own learning

and memory processes (Dunlosky & Metcalfe, 2009; Koriat, 2007).
There is ample evidence that accurate monitoring of one's knowledge
fosters learning and memory, whereas poor monitoring impairs learn-
ing and memory. For instance, a meta-analysis showed that accurate
monitoring positively predicts academic performance even when con-
trolling for intelligence (Ohtani & Hisasaka, 2018). Other studies have
differentiated between high monitoring effectiveness in terms of ab-
solute and relative accuracy. Absolute accuracy pertains to whether peo-
ple's metacognitive judgments correspond to their level of actual perfor-
mance or, alternatively, whether people are over- or underconfident (for
a different conceptualization, see Schraw, 2009). If a person predicts
that she will recall six items at test and indeed remembers six items,
then absolute accuracy is excellent. Consistent with the idea that high
absolute accuracy supports learning, training undergraduates to accu-
rately assess their own test performance improved their actual perfor-
mance (Nietfeld, Cao, & Osborne, 2006). Dunlosky and Rawson
(2012) experimentally increased the absolute accuracy with which peo-
ple judged the correctness of recalled key term definitions. They found
that high absolute accuracy of judgments improved final retention of de-
finitions. Also, individual differences in absolute accuracy predicted fi-
nal test performance, with high accuracy being associated with better
retention.

∗ Corresponding author. Schloss, Ehrenhof-Ost, 68131, Mannheim, Germany.
E-mail address: undorf@uni-mannheim.de (M. Undorf)

https://doi.org/10.1016/j.learninstruc.2019.101295
Received 3 June 2019; Received in revised form 19 November 2019; Accepted 25 November 2019
Available online xxx
0959-4752/© 2019.



UN
CO

RR
EC

TE
D

PR
OO

F

M. Undorf et al. Learning and Instruction xxx (xxxx) xxx-xxx

The second aspect of metacognitive accuracy that is essential for
learning and memory is relative accuracy, which assesses the extent to
which metacognitive judgments distinguish between correct and incor-
rect responses. If a person predicts that she will recall one item but
not another item at test, and indeed remembers only the former item,
then relative accuracy for these items is excellent. Consistent with the
idea that high relative accuracy benefits learning, relative accuracy of
people's recall predictions from a first study-test cycle predicted their
memory performance in three subsequent study-test cycles (Thiede,
1999). Structural equation modeling revealed that high relative ac-
curacy of confidence judgments had a positive direct effect on mem-
ory for an educational film in 9- and 11-year old children (Roebers,
Krebs, & Roderer, 2014). Together, these findings suggest that accu-
rate metacognitive monitoring fosters learning and memory.

Cheating may harm monitoring accuracy and in turn impair people's
learning and memory. Consider a student who has the questions that
will appear on an upcoming exam. As a result of this information, the
student does well on the exam. Will this student think of himself as an
incompetent cheater or as a high achiever who just took a shortcut? A
great deal of research suggests the latter. Psychologically healthy peo-
ple have unrealistically positive self-evaluations (Alicke, 1985; Tay-
lor & Brown, 1988). They interpret ambiguous information so as to
confirm their positive self-views and ignore or rationalize negative in-
formation about themselves (Lord, Ross, & Lepper, 1979; Pyszczyn-
ski & Greenberg, 1987). If a cheating student attributes his good per-
formance to high ability, however, this may result in him overestimat-
ing his knowledge and, consequently, underachieving on later exams.
Indeed, people often expect that their future level of performance will
match their current level of performance, even when there is good rea-
son to expect differences (Critcher & Rosenzweig, 2014; Kornell &
Hausman, 2017). For instance, memory predictions but not recall per-
formance are largely unaffected by how many times people are told that
they will be allowed to study in the future (Kornell & Bjork, 2009).

Most relevant to the current study, Chance, Norton, Gino, and
Ariely (2011) found that cheating on a test inflated global performance
predictions for future tests. Chance et al. (2011) had university stu-
dents (Experiment 2: N = 131, Experiment 3: N = 78, Experiment 4:
N = 136) complete a general-knowledge test with 10 items. The re-
searchers gave half their participants answers to the test at the bottom of
the page and instructions to use the answers only to mark their test. Not
surprisingly, participants who had answers to the first test scored higher
than control participants, indicating cheating (Cohen's d≥ 1.16). In the
second part of the experiment, all participants examined a new test for
which nobody had the answers, predicted their performance on this test,
and completed the test. On this second test, participants who had an-
swers to the first test made higher performance predictions than control
participants (Cohen's d ≥ 0.71). Test performance, however, was equal
across groups. Thus, cheating induced overconfidence.

In a later study, Chance, Gino, Norton, and Ariely (2015) in-
vestigated the temporal dynamics of cheating-induced overconfidence. Stu-
dents and community members from a paid subject pool (N = 71) com-
pleted four general-knowledge tests with 10 items. Half the participants
received answers to the first test. Again, participants who had answers
to a test scored higher on this test than control participants (Cohen's
d≥ 1.58), indicating cheating. Also, participants who had answers to the
first test overpredicted their test performance on the following two tests
(Cohen's d ≥ 0.35). On the fourth test, however, their predictions were
not overconfident anymore. Experiment 2 (N = 148) showed that when
people could cheat again on the third test, overconfidence was fully re-
instated on the fourth test (Cohen's d = 0.23).

One might wonder whether using answers printed at the bottom of
a test indeed constitutes cheating. Chance et al. (2015), however, re

ported evidence in favor of this interpretation. The researchers recruited
N = 65 community members via Amazon's Mechanical Turk and pro-
vided them with a description of their research paradigm and results.
When asked to describe the test takers who had answers to the test,
86% of participants used the words “cheating”, “dishonest”, “unethical”,
or synonyms of these words. Also, when rating the extent to which the
test takers' behavior constituted cheating on a scale from 1 (definitely
not cheating) to 10 (definitely cheating), the modal response was 10
(M = 6.98). In contrast, a new sample of N = 64 community members
who read about participants in the control condition gave a modal rat-
ing of 1 (M = 2.50). These results indicate that higher scores on tests to
which participants have answers constitute cheating as per Chance and
colleagues' (2015) experimental instructions.

In sum, previous research suggests that cheating on tests impairs the
accuracy of overall performance predictions or global-level predictions.
However, it is still unclear how profoundly cheating harms monitor-
ing accuracy. In particular, cheating might leave the accuracy of pre-
dictions about individual items on a test intact. Unlike global-level pre-
dictions, people's item-level predictions mainly reflect their experiences
with individual items. This often results in participants discounting their
metacognitive knowledge and beliefs (Bjork, Dunlosky, & Kornell,
2013; Undorf & Erdfelder, 2015). Item-level predictions have been
found repeatedly to be more accurate than global-level predictions. For
instance, judgments of text comprehension are more accurate when
made for specific item-level terms than for whole global-level passages
of text (Dunlosky & Lipko, 2007); moreover, preschoolers' item-level
judgments of learning are more accurate than their global-level judg-
ments of learning (Lipowski, Merriman, & Dunlosky, 2013). In other
cases, global-level predictions reveal that people have relevant knowl-
edge but fail to use this knowledge when making item-level predic-
tions (Ariel, Hines, & Hertzog, 2014; Hertzog, Price, & Dunlosky,
2008). Given that global-level predictions and item-level predictions are
only loosely connected, it is possible that cheating on a test impairs the
accuracy of global-level predictions but leaves the absolute and relative
accuracy of item-level predictions intact. If so, people who cheat on a
test may still be able to accurately monitor their knowledge of individ-
ual items, which might reduce the detrimental effects of impaired moni-
toring. Alternatively, it is possible that cheating impairs the accuracy of
both global- and item-level predictions.

The current study aims to determine how profoundly cheating on
tests harms monitoring accuracy. To resolve this question, we borrowed
the paradigm from Chance et al. (2015, 2011), where cheating is op-
erationally defined as increases in test performance when participants
have answers to a test. We used this paradigm across four experiments
to systematically investigate whether cheating on a test would impair
(1) the absolute accuracy of global-level performance predictions and
(2) the absolute and relative accuracy of item-level performance predic-
tions. Experiments 1 and 2 addressed the effects of test cheating on the
absolute accuracy of global-level performance predictions. Experiment 3
addressed the effects of cheating on the absolute and relative accuracy
of item-level performance predictions. In Experiment 4, we compared
the effects of cheating on global- and item-level performance predictions
within a single experiment.

2. Experiment 1

In Experiment 1, we sought to replicate the finding that cheating
on a test impairs the accuracy of global-level predictions of one's per-
formance on later tests (Chance et al., 2015). As in Chance and col-
leagues' (2015) study, participants completed four general-knowledge
tests. Before completing each test, participants examined it and pre-
dicted their score. While Chance et al. (2015) provided half the par-
ticipants with answers on Test 1 (Experiment 1) or on Tests 1 and 3
(Experiment 2), we provided participants with answers to either the
first test (Answers Test 1 group) or the third test (Answers Test 3
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group). This allowed us to compare effects of cheating on global-level
predictions within and between participants. Based on Chance and col-
leagues' (2015) results, we had three specific predictions: (1) Partici-
pants will cheat on the test with answers; (2) After completing a test
with answers, participants will make higher global-level predictions
for subsequent tests without answers, resulting in (3) cheating-induced
overconfidence in global-level predictions. If so, we should see that pre-
dictions exceed scores on the tests following the test with answers. We
made no specific predictions about the temporal course of cheating-in-
duced overconfidence. Fig. 1 illustrates our predictions. We pre-reg-
istered our predictions and analyses for Experiments 1 to 3 prior to
running Experiment 1 (available at https://tinyurl.com/y5llg6lf) and
pre-registered our predictions and analyses for Experiment 4 prior to
running Experiment 4. For the sake of completeness, we made minor
changes to several pre-registered analyses. We mention all deviations
from our pre-registered plans below and note any discrepancies in re-
sults. Data from all experiments are available at https://tinyurl.com/
y55jv9lf.

2.1. Method

2.1.1. Participants
In this experiment and in Experiments 2 and 3, we aimed for N ≥ 82

to obtain a statistical power of (1 - β) = 0.80 to detect medium-sized
effects (f = 0.25) in repeated measures ANOVAs with α = 0.05 (all
power analyses conducted via G*Power 3; Faul, Erdfelder, Lang, &
Buchner, 2007). We recruited 149 participants via Amazon's Mechan-
ical Turk and randomly assigned them to the Answers Test 1 and An-
swers Test 3 groups. We excluded 39 participants who did not com-
plete the experiment, 3 participants who requested that their data be
discarded, and 17 participants who indicated that they used a search
engine and/or received help from a friend. This left a final sample of
N = 90, with 42 participants in the Answers Test 1 group and 48 partic-
ipants in the Answers Test 3 group. The sample was 51.11% female with
a mean age of 37.42 (SD = 11.62) years. Participants were ethnically
Caucasian (72.22%), Asian/Asian-American (11.11%), Hispanic/Latin
American (8.89%), African-American (3.33%), Indian (2.22%), Native
American (1.11%), and South Asian (1.11%). Most participants were in
North America (86.05%), with the remainder residing in Asia (10.47%)
and South America (2.33%). Most participants reported that English was
their first (87.70%) and their primary language (89.90%).

Participants received $0.50 USD for completing the experiment and
learned that they would receive a performance-based bonus of $0.01 per
correct answer, though all participants received the full $0.40 bonus.1

2.1.2. Materials
We used the same four general-knowledge tests comprised of 10

questions each used by Chance et al. (2015). Questions were of
medium difficulty and covered a broad range of topics, including bi-
ology, film, geography, and history. This corresponds well with the
multi-faceted nature of general knowledge (Irwing, Cammock, &
Lynn, 2001; Rolfhus & Ackerman, 1999). Cronbach's α reliabilities
ranged from 0.57 to 0.83 (M = 0.71, SD = 0.11). The order of tests was
counterbalanced across participants.

1 The average hourly wage was $3.46 (based on the experiment's mean duration of
15.59 min, see below). This is above the estimated mean and median hourly wages of
workers on Amazon's Mechanical Turk ($3.13 and $1.77, respectively; see Hara et al.,
2018) and was approved by our Institutional Review Board. Admittedly, however, it is
below minimum wage, at least for participants residing in Northern America.

2.1.3. Procedure
All participants completed four general-knowledge tests. All ques-

tions from one test appeared simultaneously on the computer screen,
with no time limits on making predictions or answering questions. Prior
to answering the questions, participants examined the test and predicted
their score by typing any whole number from 0 to 10. For the Answers
Test 1 group, a box labeled correct answer appeared above each ques-
tion on the screen where participants made the predictions for Test 1
and on the screen where participants answered the respective questions.
When participants hovered the mouse over the box, the correct answer
appeared. Instructions read, “You can check your answers as you go, but
please do your own work.” For the Answers Test 3 group, answers ap-
peared the same way on Test 3. Fig. 2 depicts an example of what par-
ticipants saw on a test with answers. Note that mouse positions could
not be recorded because, at the time, there was no readily available way
to implement mouse position tracking via Qualtrics survey software. On
average, the experiment took 16 min to complete (based on all partici-
pants who completed the study, M = 15.59, SD = 7.76).

2.2. Measures and data analysis

Tests were scored by assigning 1 point for each correct response,
resulting in scores between 0 and 10. Answers were considered cor-
rect if they were identical to the correct answer (e.g., “Meryl Streep”)
or unambiguously indicated that participants knew the correct answer
(e.g., “Streep”, “Ms. Streep”, or “Meryl Streepe”). We then converted test
scores to percentages. People's performance predictions were also con-
verted to percentages.

If people cheat, scores on tests with answers should exceed those
on tests without answers (see Fig. 1). We evaluated this prediction
in a mixed ANOVA on test scores with test number (1, 2, 3, 4) as a
within-subjects factor and answers test group (1, 3) as a between-sub-
jects factor. In this analysis, cheating should produce a significant in-
teraction. To more closely examine the predicted interaction, we tested
separately for each group whether test scores varied across tests, using
one-way ANOVAs with test number (1, 2, 3, 4) as a within-subjects fac-
tor. We followed up on significant effects of test number using pairwise
comparisons (Bonferroni corrected t tests with p < .008) and expected
to find higher scores on Test 1 than on the other tests in the Answers
Test 1 group and higher scores on Test 3 than on the other tests in the
Answers Test 3 group.2

If cheating on a test results in overconfident global-level predictions
for later tests, predicted test scores on the tests after the test with an-
swers should be inflated (see Fig. 1). We evaluated this prediction in
a mixed 4 (Test number: 1, 2, 3, 4) × 2 (Answers test group: 1, 3)
ANOVA on predictions, expecting a significant interaction. Also, cheat-
ing-induced overconfidence should produce significant results in sepa-
rate one-way ANOVAs for each group with test number as a within-sub-
jects factor. Finally, pairwise comparisons (Bonferroni corrected t tests
with p < .008) should reveal higher predictions on Test 2 than on the
other tests in the Answers Test 1 group and higher predictions on Test 4
than on the other tests in the Answers Test 3 group.3

Cheating-induced overconfidence should reduce the absolute accu-
racy of predictions (see Fig. 1). To evaluate this prediction, we con-
ducted a 4 (Test number: 1, 2, 3, 4) × 2 (Answers test group: 1, 3) × 2
(Measure: score, prediction) mixed ANOVA. Cheating-induced overcon-
fidence should result in a significant three-way interaction among test

2 The pre-registered analysis did not include the omnibus factorial test.
3 The pre-registered analysis involved separate within-subjects ANOVAs by group that

compared only tests without answers.

3

https://tinyurl.com/y5llg6lf
https://tinyurl.com/y55jv9lf
https://tinyurl.com/y55jv9lf


UN
CO

RR
EC

TE
D

PR
OO

F

M. Undorf et al. Learning and Instruction xxx (xxxx) xxx-xxx

Fig. 1. Hypothetical data illustrating predictions for Experiment 1. The Answers Test 1 group had answers to Test 1 and the Answers Test 3 group had answers to Test 3. Higher scores on
tests with answers indicate that participants cheat on those tests. Predictions exceeding scores on the tests following the test with answers indicate cheating-induced overconfidence.

Fig. 2. Example prediction screen for a test with answers. Correct Answer buttons were displayed above each question (left panel). Answers were displayed when participants moved their
mouse cursor onto the button (right panel).

number, answers test group, and measure. To more closely examine the
predicted interaction, we tested separately for each group whether ab-
solute accuracy varied across tests, using 4 (Test number: 1, 2, 3, 4) × 2
(Measure: score, prediction) repeated-measures ANOVAs. Finally, sepa-
rate t tests were conducted to compare scores and predictions on each
test.4

To facilitate comparisons of our results to those obtained by Chance
et al. (2011), the supplemental materials report comparisons of scores
and predictions across answers test groups.

2.3. Results

There were no missing data. Fig. 3 shows actual and predicted test
scores for Tests 1 to 4 in the Answers Test 1 and Answers Test 3 groups
(see Table S1 in the supplemental materials for descriptive statistics in
tables).

2.3.1. Test scores
A 4 (Test number: 1, 2, 3, 4) × 2 (Answers test group: 1, 3) mixed

ANOVA on test scores revealed a significant main effect of test number,
F(3, 86) = 26.74, p < .001, η2p = .48, and a significant interaction,
F(3, 86) = 33.31, p < .001, η2p = .54, but no main effect of answers
test group, F(1, 88) = 2.29, p = .134, η2p = .03. Separate analyses for
each group revealed that, in the Answers Test 1 group, scores varied
across tests, F(3, 39) = 28.24, p < .001, η2p = .69, with planned com

4 The pre-registered analysis involved separate ANOVAs for each answers test group
that included only tests without answers. The reported t tests were pre-registered except
for the one comparing predictions and scores on the tests with answers.

parisons revealing Test 1 > Test 2 = Test 3 = Test 4 (see Table S2 in
the supplemental materials for inferential statistics and effect sizes). In
the Answers Test 3 group, scores varied across tests, F(3, 45) = 17.54,
p < .001, η2p = .54, with Test 3 > Test 1 = Test 2 = Test 4 (see Table
S2 for inferential statistics and effect sizes). Thus, participants from both
groups cheated on tests with answers.

2.3.2. Predictions
A 4 (Test number: 1, 2, 3, 4) × 2 (Answers test group: 1, 3) mixed

ANOVA on global-level predictions revealed a significant main effect of
test number, F(3, 86) = 10.30, p < .001, η2p = .26, and a significant
interaction, F(3, 86) = 5.96, p < .001, η2p = .17, but no main effect
of answers test group, F(1, 88) = 1.37, p = .246, η2p = .02. Separate
analyses for each group revealed that, in the Answers Test 1 group, pre-
dictions varied across tests, F(3, 39) = 8.07, p < .001, η2p = .38, with
Test 1 > Test 2 = Test 3 = Test 4 (see Table S2 for inferential statis-
tics and effect sizes). In the Answers Test 3 group, predictions varied
across tests, F(3, 45) = 3.66, p = .019, η2p = .20, with Test 3 > Test
2 = Test 4 and Test 3 = Test 1 (see Table S2 for inferential statistics
and effect sizes). Thus, participants made higher predictions on tests
with answers than on tests without answers.

2.3.3. Accuracy of predictions
The absolute accuracy of global-level predictions was evaluated in

a 4 (Test number: 1, 2, 3, 4) × 2 (Answers test group: 1, 3) × 2
(Measure: score, prediction) mixed ANOVA. Significant main effects of
test number, F(3, 86) = 28.94, p < .001, η2p = .50, and measure, F(1,
88) = 6.92, p = .010, η2p = .07, were qualified by significant interac-
tions between test number and answers test group, F(3, 86) = 23.82,
p < .001, η2p = .45, between test number and measure, F(3,

4
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Fig. 3. Mean scores and global-level predictions in Experiment 1. The Answers Test 1 group had answers to Test 1 and the Answers Test 3 group had answers to Test 3. Higher scores on
tests with answers indicated cheating. On the tests after the test with answers, predictions were well calibrated (no cheating-induced overconfidence). Error bars represent one standard
error of the mean.

86) = 3.75, p = .014, η2p = .12, and among test number, answers test
group, and measure, F(3, 86) = 8.15, p < .001, η2p = .22. No other
effects were significant, all F≤2.06, p≥.155. We followed up on the
interactions with separate ANOVAs for each group. In the Answers
Test 1 group, there was a significant main effect of test number, F(3,
39) = 24.94, p < .001, η2p = .66, and a significant interaction, F(3,
39) = 4.23, p = .011, η2p = .25, but no effect of measure, F(1,
41) = 2.10, p = .155, η2p = .05. Separate t tests revealed significant
underconfidence on Test 1, but good calibration on the other tests
(see Table S1 for inferential statistics and effect sizes). In the An-
swers Test 3 group, there were significant main effects of test number,
F(3, 45) = 12.95, p < .001, η2p = .46, and measure, F(1, 47) = 5.30,
p = .026, η2p = .10, and a significant interaction, F(3, 45) = 5.40,
p = .003, η2p = .27. Separate t tests revealed significant underconfi-
dence on Test 3, but good calibration on the other tests (see Table S1
for inferential statistics and effect sizes). Overall, predictions were un-
derconfident on tests with answers but well calibrated on tests without
answers. Thus, we did not find cheating-induced overconfidence.

2.4. Discussion

Experiment 1 replicated prior work showing that participants
cheated when they had answers to a test; however, we failed to replicate
that cheating led to subsequent overconfidence (Chance et al., 2015,
2011). Moreover, although participants made higher global-level pre-
dictions on tests with answers, their predictions for these tests were un-
derconfident. We used similar materials and procedures as Chance et
al. (2015, 2011). Nevertheless, procedural differences may explain our
failure to find cheating-induced overconfidence. Experiment 1 was an
online study, whereas Chance et al. (2015, 2011) reported classroom
and lab studies. We did not place time limits on the tests (as in Chance
et al., 2015, 2011). Unlike Chance et al. (2015, 2011), we did not
instruct participants to score their tests. Maybe, self scoring increases
the impact of current performance on global-level predictions by high-
lighting current performance.

It is unlikely that our failure to find cheating-induced overconfi-
dence was due to issues with the quality of data collected from Ama-
zon's Mechanical Turk. In particular, we observed no cases of entire tests
left blank or consistent nonsense answers. In contrast, every responder
typed in answers to questions from each of the four tests and all incor-
rect answers were related to the questions (e.g., questions about a fa-
mous person were answered with names). This argues against the pos-
sibility that responses came from artificial intelligence systems (bots,
see Bai, 2018; Dreyfuss, 2018). Also, we identified only four po-
tential repeat responders who had the same IP address and/or geolo-
cation (latitude/longitude) as a previous respondent. Excluding these

participants did not change the reported results. Together, these obser-
vations suggest that data quality in Experiment 1 was good.

Also, it is unlikely that we did not find cheating-induced overcon-
fidence because participants came from the general population. Given
that Experiment 1 participants were older than typical student samples,
it is possible that they less often take tests in everyday life. However, if
these people cheat on tests, as they did in this study, potentially harmful
effects of cheating on monitoring accuracy should nevertheless become
evident.

Experiment 2 attempted to find cheating-induced overconfidence in
a classroom study with student participants, time limits on tests, and
participant self-scoring.

3. Experiment 2

Experiment 2 was identical to Experiment 1 with the exception that
participants were students who completed the experiment in five differ-
ent classrooms at the beginning of class time. Also, all sections of the ex-
periment were timed and participants self-scored each test immediately
after answering it. We expected to find that cheating on a test would
produce overconfident global-level predictions for subsequent tests, as
found in prior work (Chance et al., 2015). Furthermore, we asked par-
ticipants to remember their score on each test at the end of the experi-
ment to see whether cheating would bias people's memories of their own
test performance.

3.1. Method

3.1.1. Participants
We recruited 93 students (Age: M = 20.93, SD = 5.22, 59% female,

38% male, 3% unreported) from five different classrooms at a mid-sized
Western Canadian university. Participants were randomly assigned to
the Answers Test 1 and Answers Test 3 groups. We excluded the data of
six participants (6.45%) who failed to give one or more global-level pre-
dictions, leaving 45 participants in the Answers Test 1 group and 43 par-
ticipants in the Answers Test 3 group. Participants received course credit
for participation and were told that they would receive a base credit of
0.5% plus performance-based bonus credit of 0.0125% per correct an-
swer. However, all participants received the full 0.5% of bonus credit.

3.1.2. Materials
Materials were identical to Experiment 1. Cronbach's α reliabilities

ranged from 0.75 to 0.84 (M = 0.79, SD = 0.04).

3.1.3. Procedure
The procedure was identical to Experiment 1 with the following ex-

ceptions. We used paper-and-pencil tests. For the test with answers, all
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answers appeared at the bottom of the test. Participants scored each test
after completing it (self scores). At the end of the experiment, they were
asked to write down their scores from each quiz (remembered scores).
All sections of Experiment 2 were timed. On each test, participants had
1 min to make predictions, 3 min to answer the questions, 1 min to self
score, and 1 min at the end of the four tests to remember their scores.
Two experimenters distributed testing packages to participants. The ex-
perimenters then stayed at the front of the room, timed each section via
stopwatches or mobile phones, and announced when participants were
to turn the page and proceed to the next section. The experimenters
observed participants to ensure that they adhered to time limits and
worked on the correct section. However, experimenters did not wander
around to observe individual participants. The experiment took about
26 min to complete.

3.2. Measures and data analysis

We obtained the same measures as in Experiment 1. In addition, we
obtained participants’ self scores and the scores they remembered for
each test. Self scores and remembered scored were converted to percent-
ages and then submitted to the same analyses as actual test scores. Data
analysis was identical to Experiment 1.

3.3. Results

There were no missing data. Fig. 4 shows actual and predicted test
scores for Tests 1 to 4 in the Answers Test 1 and Answers Test 3 groups
(see Table S1 in the supplemental materials for descriptive statistics in
tables). Self scores and remembered scores appear in the supplemental
materials. Both measures were virtually identical to actual test scores
and all analyses revealed the same results as those on the actual test
scores reported here.

3.3.1. Test scores5

A 4 (Test number: 1, 2, 3, 4) × 2 (Answers test group: 1, 3) mixed
ANOVA on test scores revealed a significant main effect of test num-
ber, F(3, 84) = 23.89, p < .001, η2p = .46, and a significant interac-
tion, F(3, 84) = 27.13, p < .001, η2p = .49, but no main effect of an-
swers test group, F < 1. Separate analyses for each group revealed that
scores varied across tests, Answers Test 1 group: F(3, 42) = 21.48,
p < .001, η2p = .61, with Test 1 > Test 2 = Test 3 = Test 4; Answers
Test 3 group: F(3, 40) = 12.31, p < .001, η2p = .48, with Test 3 > Test
1 = Test 2 = Test 4 (see Table S2 for inferential statistics and effect
sizes). Thus, as in Experiment 1, participants cheated on tests with an-
swers.

3.3.2. Predictions6

A 4 (Test number: 1, 2, 3, 4) × 2 (Answers test group: 1, 3) mixed
ANOVA on global-level predictions revealed a significant main effect
of test number, F(3, 84) = 7.35, p < .001, η2p = .21, and a signifi-
cant interaction, F(3, 84) = 8.35, p < .001, η2p = .23, but no main ef-
fect of answers test group, F < 1. Separate analyses for each group re-
vealed that predictions varied across tests, Answers Test 1 group: F(3,
42) = 6.96, p < .001, η2p = .33, with Test 1 > Test 2 = Test 3 = Test
4; Answers Test 3 group: F(3, 40) = 4.46, p = .009, η2p = .25, with
Test 3 > Test 1 = Test 2 = Test 4 (see Table S2 for inferential statis-
tics and effect sizes). Thus, participants made higher predictions on tests
with answers than on tests without answers.

5 The pre-registered analysis did not include the omnibus factorial test.
6 The pre-registered analysis involved separate within-subjects ANOVAs by answers

test group that compared only tests without answers.

3.3.3. Accuracy of predictions7

A 4 (Test number: 1, 2, 3, 4) × 2 (Answers test group: 1, 3) × 2
(Measure: score, prediction) mixed ANOVA revealed a significant main
effect of test number, F(3, 84) = 18.03, p < .001, η2p = .39, which was
qualified by significant interactions between test number and answers
test group, F(3, 84) = 20.59, p < .001, η2p = .42, between test num-
ber and measure, F(3, 84) = 9.87, p < .001, η2p = .26, and among test
number, answers test group, and measure, F(3, 84) = 10.65, p < .001,
η2p = .28. No other effects were significant, all F≤2.23, p≥.139. We fol-
lowed up on the interactions with separate ANOVAs for each group. In
the Answers Test 1 group, there was a significant main effect of test
number, F(3, 42) = 18.76, p < .001, η2p = .57, and a significant inter-
action, F(3, 42) = 9.74, p < .001, η2p = .41, but no effect of measure,
F(1, 44) = 1.88, p = .177, η2p = .04. Separate t tests revealed signifi-
cant underconfidence on Test 1, significant overconfidence on Test 2,
and good calibration on Tests 3 and 4 (see Table S1 for inferential sta-
tistics and effect sizes). In the Answers Test 3 group, there was a signif-
icant main effect of test number, F(3, 40) = 8.26, p < .001, η2p = .38,
and a significant interaction, F(3, 40) = 5.22, p = .004, η2p = .28, but
no effect of measure, F < 1. Separate t tests revealed good calibration
on Tests 1 and 2, marginal underconfidence on Test 3, and overconfi-
dence on Test 4 (see Table S1 for inferential statistics and effect sizes).
Thus, both groups’ predictions were underconfident on tests with an-
swers but overconfident on the test immediately after the test with an-
swers, demonstrating cheating-induced overconfidence.

3.4. Discussion

Unlike Experiment 1, this experiment replicated Chance and col-
leagues' findings (2015, 2011): Cheating on a test produced overconfi-
dent global-level predictions for the test that followed. One slight dif-
ference to Chance and colleagues' findings (2015, 2011) was that our
cheating-induced overconfidence did not persist beyond the test imme-
diately after cheating. Nevertheless, cheating on a test impaired the ac-
curacy of global-level predictions. We found no indication that cheating
biased people's memories of their test performance. Thus, remembered
scores will not be discussed further.

Given that Experiment 2 revealed cheating-induced overconfidence
in global-level predictions, Experiment 3 investigated whether cheating
would also harm the accuracy of item-level predictions.

4. Experiment 3

As we mentioned in the introduction, global- and item-level predic-
tions are only loosely connected: Item-level predictions are often more
accurate (e.g., Dunlosky & Lipko, 2007; Lipowski et al., 2013).
Thus, it is possible that, even when global-level predictions are subject
to cheating-induced overconfidence, people are still able to accurately
monitor their knowledge of individual items. If so, detrimental effects of
impaired monitoring might be greatly reduced. However, it is also pos-
sible that cheating impairs the accuracy of item-level predictions. Cheat-
ing-induced overconfidence – as was found for global-level predictions –
would indicate that cheating impairs the absolute accuracy of item-level
predictions. Alternatively or additionally, cheating might harm the rela-
tive accuracy of item-level predictions, that is, impair people's ability to
distinguish between correct and incorrect responses. As we noted in the
Introduction, high absolute and relative accuracy are distinct aspects of
monitoring accuracy that foster learning and memory.

7 The pre-registered analysis involved only tests without answers. It revealed a main
effect of measure such that average predictions were higher than average scores.
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Fig. 4. Mean scores and global-level predictions in Experiment 2. The Answers Test 1 group had answers to Test 1 and the Answers Test 3 group had answers to Test 3. Higher scores
on tests with answers indicated cheating. On the test immediately after the test with answers, predictions were overconfident (cheating-induced overconfidence). Error bars represent one
standard error of the mean.

In Experiment 3, we investigated the effects of cheating on the ab-
solute and relative accuracy of item-level performance predictions. For
each test, participants predicted their chances of answering each indi-
vidual question correctly. As in the previous experiments, all partici-
pants completed four general-knowledge tests and had answers to Test
1 or Test 3. If cheating-induced overconfidence generalizes to item-level
predictions, we should find overconfidence on tests that follow a test
with answers. Additionally or alternatively, it is possible that cheating
impairs people's ability to assess the relative difficulty of questions. If so,
we should find lower relative accuracy of item-level predictions for tests
that follow on a test with answers.

We will index relative accuracy by a widely used measure: the
within-person Goodman-Kruskal gamma correlation between judgments
and performance (e.g., Baars, Vink, van Gog, de Bruin, & Paas,
2014; Bröder & Undorf, 2019; Dunlosky & Thiede, 2012). Gamma
is a nonparametric correlation coefficient that was identified as superior
to other measures of relative accuracy by Nelson (1984). It is widely
applicable, makes no scaling assumptions beyond the ordinal level, and
can attain maximum values independent of ties and the level of memory
performance (see also Gonzalez & Nelson, 1996; for criticism and al-
ternative measures, see; Bröder & Undorf, 2019; Murayama, Sakaki,
Yan, & Smith, 2014; Schraw, 2009). Positive gamma correlations, in-
dicating good relative accuracy, result when participants assign higher
item-level predictions to correct than to incorrect responses. We ex-
pected significantly positive gamma correlations on all tests. If cheating
impairs relative accuracy, we should find reduced gamma correlations
after the test with answers.

4.1. Method

4.1.1. Participants
We recruited 104 students (Age: M = 22.58, SD = 6.42, 78% fe-

male) at a mid-sized Western Canadian university. Students participated
in groups in a lab classroom (1–10 participants per session, M = 3.29,
SD = 2.67), and were randomly assigned to the Answers Test 1 and An-
swers Test 3 groups. We excluded the data of two participants (1.92%)
who failed to make 20 or more item-level predictions, leaving 45 partic-
ipants in the Answers Test 1 group and 57 participants in the Answers
Test 3 group. Participant compensation and performance-based bonuses
were the same as in Experiment 2.

4.1.2. Materials
Because participants in Experiment 2 performed worse on the gen-

eral-knowledge test than participants in prior studies, we selected a
new, easier set of 40 general-knowledge questions that included ques-
tions used in the previous experiments and new questions from a pool

compiled by Tauber, Dunlosky, Rawson, Rhodes, and Sitzman
(2013). Based on a pilot study with N = 83 students, we selected 40
questions with percentage correct ranging from 32.36% to 58.82%. As
in Experiments 1 and 2, questions covered a broad range of topics,
including biology, film, geography, history, and sports. We compiled
four tests of equal difficulty (M = 46.27%–47.59%, SD = 8.02–8.70,
Min: 32.39%–34.78%, Max = 57.75%–58.86%). Cronbach's α reliabili-
ties ranged from 0.65 to 0.85 (M = 0.77, SD = 0.08).

4.1.3. Procedure
The procedure was identical to Experiment 2 except that we elicited

item-level predictions instead of global-level predictions. The prompt
“Chance of getting this question correct (0%–100%): _____” appeared be-
side each question. Participants wrote the probability of responding cor-
rectly on each question before answering the questions. Because partic-
ipants had to make 10 predictions per test, we extended the prediction
time to 1.5 min. The experiment took about 28 min to complete. The
setting was somewhat different from Experiment 2 in that students par-
ticipated outside of classes and in smaller groups. Because of this, only
one experimenter was present in most sessions.

4.2. Measures and data analysis

Measures were identical to Experiment 2 except that we obtained
item-level predictions instead of global-level predictions. Item-level pre-
dictions were made on a percentage scale and did not require conver-
sion. We measured the relative accuracy of item-level predictions using
within-participants gamma correlations between scores and predictions.

Data analysis was identical to Experiment 1 except that we added
two analyses evaluating the relative accuracy of predictions. We first
tested whether gamma correlations were significantly positive in all
tests and conditions, using one-sample t tests. To test whether cheat-
ing impaired the relative accuracy of predictions, gamma correlations
were then submitted to a 4 (Test number: 1, 2, 3, 4) × 2 (Answers test
group: 1, 3) mixed ANOVA. If cheating impairs the relative accuracy of
item-level predictions, we should find a significant interaction between
test number and answers test group.

4.3. Results

A total of 12 predicted test scores and 1 remembered test score were
missing, resulting in 0.10% missing data. Fig. 5 shows actual and pre-
dicted test scores for Tests 1 to 4 in the Answers Test 1 and Answers
Test 3 groups (see Table S1 in the supplemental materials for descrip-
tive statistics in tables). As in Experiment 2, self scores and remem
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Fig. 5. Mean scores and item-level predictions in Experiment 3. The Answers Test 1 group had answers to Test 1 and the Answers Test 3 group had answers to Test 3. Higher scores on
tests with answers than without answers indicated cheating. On the tests after the test with answers, predictions were well calibrated (no cheating-induced overconfidence). Error bars
represent one standard error of the mean.

bered scores were virtually identical to actual test scores and revealed
the same results as actual test scores (see supplemental materials).

4.3.1. Test scores8

A 4 (Test number: 1, 2, 3, 4) × 2 (Answers test group: 1, 3) mixed
ANOVA on test scores revealed a significant main effect of test num-
ber, F(3, 98) = 16.01, p < .001, η2p = .33, and a significant interac-
tion, F(3, 98) = 23.52, p < .001, η2p = .42, but no main effect of an-
swers test group, F < 1. Separate analyses for each group revealed that
scores varied across tests, Answers Test 1 group: F(3, 42) = 15.69,
p < .001, η2p = .53, with Test 1 > Test 2 = Test 3 = Test 4; Test 3 An-
swers group: F(3, 54) = 23.37, p < .001, η2p = .57, with Test 3 > Test
1 = Test 2 = Test 4 (see Table S2 for inferential statistics and effect
sizes). Thus, as in the previous experiments, participants cheated on
tests with answers.

4.3.2. Predictions9

A 4 (Test number: 1, 2, 3, 4) × 2 (Answers test group: 1, 3) mixed
ANOVA on item-level predictions revealed a marginal main effect of test
number, F(3, 98) = 2.60, p = .056, η2p = .07, and a significant inter-
action, F(3, 98) = 5.59, p = .001, η2p = .15, but no main effect of an-
swers test group, F < 1. Separate analyses for each group revealed that
predictions varied across tests, Answers Test 1 group: F(3, 42) = 4.16,
p = .011, η2p = .23, with Test 1 = Test 2 = Test 4, Test 1 > Test 3,
and Test 2 = Test 3 = Test 4; Answers Test 3 group: F(3, 54) = 4.57,
p = .006, η2p = .20, with Test 3 = Test 1, Test 3 > Test 2 = Test 4,
and Test 1 = Test 2 = Test 4 (see Table S2 for inferential statistics and
effect sizes). Overall, participants made higher item-level predictions on
tests with answers than on tests without answers, although differences
were smaller than in the previous experiments.

4.3.3. Accuracy of predictions
Absolute accuracy10 was evaluated in a 4 (Test number: 1, 2, 3,

4) × 2 (Answers test group: 1, 3) × 2 (Measure: score, prediction)
mixed ANOVA, which revealed significant main effects of test num-
ber, F(3, 98) = 10.45, p < .001, η2p = .24, and measure, F(1,
100) = 51.32, p < .001, η2p = .34, that were qualified by significant
interactions between test number and answers test group, F(3,

8 The pre-registered analysis did not include the omnibus factorial test.
9 The pre-registered analysis involved separate within-subjects ANOVAs by answers

test group that compared only tests without answers.
10 The pre-registered analysis did not include the omnibus factorial test and involved

only tests without answers. It revealed underconfidence in the Answers test 3 group but
not in the Answers test 1 group. These superficial differences do not affect the overall con-
clusion that cheating did not produce overconfidence.

98) = 18.72, p < .001, η2p = .36, between test number and measure,
F(3, 98) = 8.59, p < .001, η2p = .21, and among test number, an-
swers test group, and measure, F(3, 98) = 12.00, p < .001, η2p = .27.
No other effects were significant, all F≤1.43, p≥.234. We followed up
on the interactions with separate ANOVAs for each group. In the An-
swers Test 1 group, there were significant main effects of test number,
F(3, 42) = 13.67, p < .001, η2p = .49, and measure, F(1, 44) = 16.98,
p < .001, η 2p = .28, and a significant interaction, F(3, 42) = 5.04,
p = .004, η2p = .27. Separate t tests revealed significant underconfi-
dence on Tests 1 and 4, but good calibration on Tests 2 and 3 (see Table
S1 for inferential statistics and effect sizes). In the Answers Test 3 group,
there were significant main effects of test number, F(3, 54) = 17.72,
p < .001, η2p = .50, and measure, F(1, 56) = 37.78, p < .001,
η2p = .40, and a significant interaction, F(3, 54) = 10.58, p < .001,
η2p = .37. Separate t tests revealed significant underconfidence on Tests
2 to 4, but not on Test 1 (see Table S1 for inferential statistics and ef-
fect sizes).

Relative accuracy, indexed by within-participants gamma correla-
tions between scores and predictions, is shown in Table 1. A total of 58
(14.21%) gamma correlations could not be computed because of a lack
of variability in scores or predictions. This was most often due to perfect
scores on the tests with answers (see Table 1 for the number of par-
ticipants contributing to each mean correlation).11 Gamma correlations
were positive in all four tests and both groups, indicating good relative
accuracy. A 4 (Test number: 1, 2, 3, 4) × 2 (Answers test group: 1, 3)
mixed ANOVA12 revealed no significant effects, all F < 1.

Overall, predictions were generally underconfident, with the notable
exception of well-calibrated predictions on the two tests following the
test with answers in the Answers Test 1 group, and the test immediately
after the test with answers in the Answers Test 3 group. Cheating did
not affect the relative accuracy of predictions.

4.4. Discussion

In Experiment 3, cheating on a test did not produce overconfi-
dence in item-level predictions. Rather, absolute and relative accuracy
of item-level predictions were intact after cheating. These results dif-
fer from Experiment 2, in which cheating resulted in overconfident
global-level predictions on the subsequent test. Based on these find-
ings, one

11 Because of the relatively large number of ties, we also analyzed relative accuracy in
Experiments 3 and 4 using generalized mixed-effects models (Murayama et al., 2014).
Results were similar those found with gamma correlations. To remain consistent with the
pre-registered analysis and the majority of studies on metacognitive monitoring, we report
gamma correlations.

12 The pre-registered analysis involved separate tests for each group.
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Table 1
Means (and standard deviations) of gamma correlations between actual and predicted test
scores in experiments 3 and 4.

Experiment and condition Test number

1 2 3 4

Experiment 3
Answers Test 1 group .81 (.35),

n = 32
.66
(.51),
n = 38

.71
(.35),
n = 42

.78
(.26),
n = 43

Answers Test 3 group .70 (.44),
n = 53

.64
(.46),
n = 56

.73
(.50),
n = 33

.74
(.37),
n = 53

Experiment 4
Global-level predictions
first group

.88
(.26),
n = 56

.73
(.49),
n = 84

Item-level predictions first
group

.80 (.34),
n = 64

.74
(.42),
n = 107

Note. All correlations were significant at p < .001 in one-sample t tests against 0. n refers
to the number of participants contributing to the respective means.

might be tempted to conclude that cheating harms the accuracy of
global-level predictions but leaves the accuracy of item-level predictions
intact. Experiment 4 directly tested this possibility.

5. Experiment 4

Cheating on a test produced overconfidence in global-level predic-
tions for the subsequent test in Experiment 2 but not in Experiment 1.
In Experiment 3, cheating did not produce overconfidence in item-level
predictions. Assuming that the lack of cheating-induced overconfidence
in Experiment 1 was due to its particular procedure (online study in
which participants did not score their tests), a plausible conclusion is
that detrimental effects of cheating on monitoring accuracy are limited
to global-level predictions. However, caution is warranted, because this
conclusion is based on cross-experimental comparisons involving differ-
ent knowledge tests and procedures. Additionally, Experiment 3 was the
first study to investigate the effects of cheating on item-level predic-
tions. Experiment 4 therefore aimed to replicate findings from Exper-
iments 2 and 3 in a single high-powered experiment (pre-registration
available at https://tinyurl.com/y3o4u3zn). In this experiment, all par-
ticipants made global-level predictions on tests with and without an-
swers, and item-level predictions on tests with and without answers.
Half the participants made global-level predictions on the first two of
four tests (global-level predictions first group), whereas the other half
made item-level predictions on the first two of four tests (item-level pre-
dictions first group). If harmful effects of cheating on monitoring accu-
racy are limited to global-level predictions, we should find cheating-in-
duced overconfidence in global-level predictions but intact accuracy of
item-level predictions.

5.1. Method

5.1.1. Participants
We aimed for N ≥ 176 to obtain a statistical power of (1 - β) = 0.95

to detect medium-sized effects (d = 0.5) in independent-samples t tests,
and even higher power in all other analyses. We recruited 227 students
(Age: M = 20.6, SD = 5.32, 76% female) at a mid-sized Western Cana-
dian university who were tested in classrooms or groups (1–33 par-
ticipants per session, M = 21.23, SD = 8.97). Students were randomly
assigned to the global- and item-level predictions first groups. We ex-
cluded the data of 13 participants (5.73%) who failed to give all re-
quired global-level predictions (8 participants) or more than 10 item-

level predictions (5 participants), leaving 97 participants in the
global-level predictions first group and 117 participants in the item-level
predictions first group. Participant compensation and perfor-
mance-based bonuses were the same as in Experiments 2 and 3 except
for 33 participants who completed the study as part of an on-campus
event. These participants were entered into a draw for a $15 coffee shop
gift card and gained additional entries into the draw based on their per-
formance.

5.1.2. Materials
Materials were identical to Experiment 3. Cronbach's α reliabilities

ranged from 0.75 to 0.81 (M = 0.77, SD = 0.03).

5.1.3. Procedure
All participants received answers on Tests 1 and 3 and made

global-level predictions on two tests (elicited as in Experiment 2) and
item-level predictions on the remaining two tests (elicited as in Experi-
ment 3). Participants from the global-first group made global-level pre-
dictions on Tests 1 and 2 and item-level predictions on Tests 3 and
4, whereas participants from the item-level-first group made item-level
predictions on Tests 1 and 2 and global-level predictions on Tests 3 and
4. In all other respects, the procedure was identical to that of Experi-
ment 3.

5.2. Measures and data analysis

Measures were identical to Experiment 3. To test whether partici-
pants cheated, test scores were submitted to a mixed ANOVA with test
number (1, 2, 3, 4) as a within-subjects factor and order of predictions
group (global-level first, item-level first) as a between-subjects factor.
Cheating should produce a significant main effect of test number, with
pairwise comparisons (Bonferroni corrected t tests with p < .008) re-
vealing higher scores on Tests 1 and 3 than on the other tests in both
groups.

If cheating on a test results in overconfident global-level predictions,
predicted test scores should be inflated on Test 2 in the global-level first
group and on Test 4 in the item-level first group. This should result in
a significant interaction between test number (1, 2, 3, 4) and order of
predictions group (global-level first, item-level first) in a mixed ANOVA
on predictions. Also, it should produce significant results in separate
one-way ANOVAs with test number (1, 2, 3, 4) as a within-subjects fac-
tor for each group. Finally, pairwise comparisons (Bonferroni corrected
t tests with p < .008) should reveal higher predictions on Test 2 than on
the other tests in the global-level first group and higher predictions on
Test 4 than on the other tests in the item-level first group.

To test whether cheating-induced overconfidence reduced the ab-
solute accuracy of global-level predictions, we conducted a 4 (Test
number: 1, 2, 3, 4) × 2 (order of predictions group: global-level first,
item-level first) × 2 (Measure: score, prediction) mixed ANOVA. Cheat-
ing-induced overconfidence in global-level predictions should result in
a significant three-way interaction among test number, order of predic-
tions group, and measure. To more closely examine the predicted in-
teraction, we tested separately for each group whether absolute accu-
racy varied across tests, using 4 (Test number: 1, 2, 3, 4) × 2 (Measure:
score, prediction) repeated-measures ANOVAs. Finally, separate t tests
were conducted to compare scores and predictions on each test.

We expected that cheating would not affect the relative accuracy of
item-level predictions. To test this prediction, we submitted gamma cor-
relations for all tests involving item-level predictions to a 2 (Test: with
answers, without answers) × 2 (Order of predictions group: global-level
first, item-level first) mixed ANOVA. We expected no significant effects.
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5.3. Results

A total of 10 predicted test scores and 1 self score were missing, re-
sulting in 0.05% missing data. Fig. 6 shows actual and predicted test
scores for Tests 1 to 4 in the global-first and item-level-first groups (see
Table S3 in the supplemental materials for descriptive statistics in ta-
bles). As in the previous experiments, self scores and remembered scores
were virtually identical to actual test scores and revealed the same re-
sults as actual test scores (see supplemental materials).

5.3.1. Test scores
A 4 (Test number: 1, 2, 3, 4) × 2 (Order of predictions group:

global-level first, item-level first) mixed ANOVA on test scores revealed
a significant main effect of test number, F(3, 210) = 68.28, p < .001,
η2p = .49, but no other significant effects, order of predictions group:
F(1, 212) = 2.65, p = .105, η2p = .01, interaction: F < 1. Planned
comparisons revealed Test 1 = Test 3 > Test 2 = Test 4 in both groups
(see Table S4 in the supplemental materials for inferential statistics and
effect sizes). Thus, as in the previous experiments, participants cheated
on tests with answers.

5.3.2. Predictions
A 4 (Test number: 1, 2, 3, 4) × 2 (Order of predictions group:

global-level first, item-level first) mixed ANOVA on predictions revealed
main effects of test number, F(3, 210) = 26.93, p < .001, η2p = .28,
and order of predictions group, F(1, 212) = 5.52, p = .020, η2p = .03,
but no interaction, F < 1. Planned comparisons revealed Test 1 = Test
3 > Test 2 = Test 4 in the global-level predictions first group and Test
3 > Test 1 > Test 2, Test 3 > Test 4, and Test 1 = Test 4 in the
item-level predictions first group (see Table S4 for inferential statistics
and effect sizes). Thus, participants made higher global- and item-level
predictions on tests with answers than on tests without answers.

5.3.3. Accuracy of predictions
Absolute accuracy was evaluated in a 4 (Test number: 1, 2, 3, 4) × 2

(Order of predictions group: global-level first, item-level first) × 2
(Measure: score, prediction) mixed ANOVA, which revealed significant
main effects of test number, F(3, 210) = 54.53, p < .001, η2p = .44,
order of predictions group, F(1, 212) = 4.46, p = .036, η2p = .02, and
measure, F(1, 212) = 123.00, p < .001, η2p = .37, and a significant
interaction between test number and measure, F(3, 210) = 24.35,
p < .001, η2p = .26. No other interactions were significant, F≤1.83,
p≥.177. Separate t tests revealed significant underconfi

dence on Tests 1 to 3, but not on Test 4 (see Table S3 for inferential
statistics and effect sizes).

Relative accuracy of item-level predictions was again evaluated us-
ing gamma correlations. A total of 117 (27.34%) gamma correlations
could not be computed. As in Experiment 3, this was most often due
to perfect scores on the tests with answers (see Table 1). Gamma cor-
relations were positive in all tests and conditions, indicating good rela-
tive accuracy. A 2 (Test: with answers, without answers) × 2 (Order of
predictions group: global-level first, item-level first) mixed ANOVA re-
vealed no significant effects, all F≤1.50, p≥.224.

Overall, global- and item-level predictions were underconfident on
all tests, meaning that we did not find cheating-induced overconfidence.
Also, cheating did not affect the relative accuracy of item-level predic-
tions, replicating our results in Experiment 3.

6. Discussion

In Experiment 4, cheating on a test harmed neither the accuracy of
global-level predictions nor the accuracy of item-level predictions. This
indicates that monitoring accuracy is robust against cheating. Intact ac-
curacy of global-level predictions after cheating replicated Experiment
1, but was inconsistent with Experiment 2. Conversely, intact accuracy
of item-level predictions replicated Experiment 3 (see Table 2 for an
overview of findings).

This finding raises the question of why cheating impaired the accu-
racy of global-level predictions in Experiment 2 but not in Experiment
4. The observed difference in results seems to be unrelated to the fact
that Experiment 4 participants made item-level predictions in addition
to global-level predictions, because there was no evidence for cheat-
ing-induced overconfidence in participants who made global-level pre-
dictions prior to item-level predictions. Also, participants from both ex-
periments came from the same population and all experimental proce-
dures were identical. One difference between Experiments 2 and 4 was
that, in Experiment 2, we used the same general-knowledge questions
as Chance et al. (2015), while in Experiment 4, we used easier gen-
eral-knowledge questions that were of similar difficulty for our partici-
pants as those used by Chance et al. (2015) for their participants. Our
finding of cheating-induced overconfidence in Experiment 2 but not in
Experiment 4 may therefore indicate that this effect is closely tied to
the specific materials used by Chance et al. (2015). Inconsistent with
this possibility, however, Chance et al. (2011, Experiment 1) reported
cheating-induced overconfidence on a test of math IQ that used very dif-
ferent questions. We return to this issue in the General Discussion.

Overall, Experiment 4 demonstrated intact accuracy of global- and
item-level predictions after cheating on a test, indicating that monitor-
ing accuracy is robust against cheating.

Fig. 6. Mean scores and predictions in Experiment 4. All participants had answers to Tests 1 and 3. The global-level predictions first group made global-level predictions on the first two
tests and item-level predictions on the last two tests. The item-level predictions first group made item-level predictions on the first two tests and global-level predictions on the last two
tests. Higher scores on tests with answers indicated cheating. On the tests after the tests with answers, predictions were well calibrated (no cheating-induced overconfidence). Error bars
represent one standard error of the mean.
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Table 2
Summary of experiments 1 to 4.

Experiment Setting Materials
Type of
predictions

Cheating
on tests
with
answers

Cheating-
induced
overconfidence

Cheating-
impaired
relative
accuracy

1 Online Chance
et al.‘s
GK tests

Global-
level

Yes No

2 Classrooms
(during
class time)

Chance
et al.‘s
GK tests

Global-
level

Yes Yes

3 Lab
classrooms

Easier
GK tests

Item-level Yes No No

4 Classrooms
(during
class time)
and lab
classrooms

Easier
GK tests

Global-
level,

Yes No

Item-level Yes No No

Note. GK = general knowledge.

7. General discussion

The current study addressed whether cheating on a test would harm
metacognitive monitoring accuracy. More specifically, we tested
whether cheating would (a) produce overconfidence in global-level pre-
dictions on future test performance, (b) produce overconfidence in
item-level predictions on future test performance, and (c) impair the rel-
ative accuracy of item-level predictions. Across four experiments, sum-
marized in Table 2, participants cheated when they had answers to
a test, but showed little evidence of cheating-impaired monitoring ac-
curacy. We found cheating-induced overconfidence in global-level pre-
dictions in only one of three experiments involving global-level predic-
tions. This indicates that although test cheating can produce overconfi-
dent global-level predictions, it is not a consistent source of bias. Neither
of the two experiments involving item-level predictions revealed any ev-
idence for harmful effects of cheating on the absolute or relative accu-
racy of item-level predictions.

We assessed whether our results provided evidence against cheat-
ing-induced overconfidence in global- and item-level predictions. We
performed Bayesian meta-analyses on the t statistics and samples sizes
comparing scores and predictions on the test immediately after the test
with answers (Rouder & Morey, 2011). We used default specifica-
tions in this analysis (Cauchy prior, r scale = 0.707). For global-level
predictions, the Bayesian meta-analysis indicated that our data were
about 33 times more likely under the null than the alternative hy-
pothesis (BF10 = 0.03), providing strong evidence against cheating-in-
duced overconfidence in global-level predictions. For item-level predic-
tions, the Bayesian meta-analysis indicated that our data were about
125 times more likely under the null than the alternative hypothesis
(BF10 = 0.008), providing decisive evidence against cheating-induced
overconfidence in item-level predictions. Thus, the current study sug-
gests that monitoring accuracy is robust against cheating. Although
cheating may impair learning and memory, our results suggest that any
such impairment is not due to impaired monitoring accuracy.

Our results raise the question as to why cheating-induced overconfi-
dence in global-level predictions was less compelling in this study than
in the studies by Chance et al. (2015, 2011). Although we cannot an-
swer conclusively, three issues are worth noting. First, the absence of
an effect in the current experiments is unlikely due to a lack of statisti-
cal power. Our statistical power for detecting medium-sized effects ex-
ceeded 0.80 in Experiments 1 to 3 and 0.95 in Experiment 4. Our Ex-
periment 4 is the largest experiment to date assessing effects of cheat

ing on performance predictions for future tests. Second, our finding of
cheating-induced overconfidence in Experiment 2 indicates that Chance
and colleagues' (2015, 2011) results may be replicable. But the fact
that we obtained cheating-induced overconfidence only when running
a classroom study that used exactly the same materials as Chance et
al. (2015) suggests at least that cheating-induced overconfidence is not
as robust or generalizable as one might expect. Finally, one might ar-
gue that cheating-induced overconfidence in participants who cheated
on tests with answers was counteracted by underconfidence in partici-
pants who did not cheat. Although we cannot entirely rule out this pos-
sibility, an exploratory analysis argued against it. In this analysis, we
scored participants as cheaters if their scores on tests with answers were
higher than their maximum score on tests without answers. By this de-
finition, between 60.19% (Experiment 3) and 83.18% (Experiment 4)
of participants qualified as cheaters. Importantly, there was no sign of
cheating-induced overconfidence in the cheaters’ predictions, all t≤2.03,
all p≥.050.

To improve the generalizability of our results, we recruited par-
ticipants from two different populations13 and used two different sets
of general-knowledge test materials. Nevertheless, using general-knowl-
edge questions across all experiments may have limited the generaliz-
ability of our findings in certain respects. In particular, we cannot ex-
clude the possibility that cheating may harm monitoring accuracy for
materials other than general-knowledge questions. One might specu-
late that detrimental effects of cheating on monitoring accuracy may be
found when tests are very similar. Although each of our general-knowl-
edge tests covered similar areas of general knowledge, participants may
have still felt that similarity between tests was limited (e.g., the two ge-
ography questions “What is the capital of and largest city in Japan?”
and “In what U.S. state is Atlantic City located?” may appear very dif-
ferent to a person who is more knowledgeable about American geogra-
phy than about Asian geography). If so, cheating may harm monitor-
ing accuracy when the similarity between tests is higher, such as for
tests on course-based materials. Similarly, it is an open question whether
cheating on tests of newly learned materials may harm monitoring ac-
curacy. Maybe it is easier to distinguish whether accurate responses re-
sulted from cheating or from knowledge stored in one's semantic mem

13 Participants from the two populations differed with respect to both age and location.
We do not know, however, to what extent they differed in education or socioeconomic sta-
tus.
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ory than to distinguish whether accurate responses resulted from cheat-
ing or from recent studying. If so, cheating may harm monitoring accu-
racy for future tests on recently studied information. Finally, increasing
the spacing between tests in time might decrease people's memory of the
reasons for their good performance and, consequently, induce harmful
effects of cheating on monitoring accuracy.

Importantly, however, apart from studies demonstrating that people
expect their future level of performance to match their current level of
performance (e.g., Critcher & Rosenzweig, 2014; Kornell & Haus-
man, 2017) and a single experiment by Chance et al. (2011, Ex-
periment 1), there currently is no research suggesting that cheating on
tests with materials other than general-knowledge questions may impair
monitoring accuracy.

Although these speculations are intriguing and may merit future re-
search, using tests with very similar or newly learned materials may cre-
ate an issue in the interpretation of overconfidence after test cheating.
Specifically, whenever answering one test question strengthens memory
for answers to other test questions, overconfidence may occur because
people overestimate the benefits of looking up answers at the bottom
of the page and, at the same time, underestimate the benefits of trying
to recall answers from memory. Consistent with this possibility, learn-
ers often regard restudying as more effective than retrieval practice,
even though actual performance shows the opposite pattern (Karpicke,
2009; Kornell & Son, 2009). We think that underestimating the ben-
efits of retrieval practice may not explain cheating-induced overconfi-
dence when using general-knowledge tests where retrieval practice is
not critical. However, it might be essential to consider neglecting the
benefits of retrieval practice as an alternative explanation for cheat-
ing-induced overconfidence when using test materials other than gen-
eral-knowledge questions.

Our finding of overconfident global-level predictions after cheat-
ing in Experiment 2 but not in Experiments 1 or 4 might be taken to
suggest that difficult items promote cheating-induced overconfidence
(mean scores across tests without answers were 22.85% in Experiment 2
but 55.33% in Experiment 1 and 60.00% in Experiment 4). Note, how-
ever, that this explanation is not fully consistent with Chance et al.
(2015) finding of cheating-induced overconfidence with scores around
50%. Clearly, further research is needed to confirm a potential link be-
tween test difficulty and harmful effects of cheating on monitoring ac-
curacy.

The current results have obvious educational relevance. Research on
academic integrity has identified several ways to reduce but not elimi-
nate test cheating (Bretrag, 2016; McCabe et al., 2012). For instance,
McCabe and Trevino (1993) found that academic honor codes re-
duced the percentage of students who admitted to copying from others
on tests from 32% to 13%. In view of the pervasiveness of test cheat-
ing, the current results might be comforting. In particular, they argue
against the idea that test cheating impairs monitoring accuracy and,
consequently, learning and memory. Considering that test cheating has
other adverse consequences, however, this does not condone cheating.

Of course, there are several potential challenges and limitations to
the generalizability of the present results to real-world cheating. First,
in our experiments, cheating may have been more ambiguous and eas-
ier than in many real-world tests, mainly because we provided answers
at the bottom of the test. Consequently, our design may have inflated
cheating as compared to real-world tests. At the same time, there is lit-
tle doubt that using provided answers when working on the test con-
stituted cheating. Doing so clearly violated test instructions and is re-
garded as cheating by community members (Chance et al., 2015).
Moreover, gains from cheating in our experiments were presumably
smaller than in many real-world tests. Although we made sure to in-
centivize good performance by a performance-based bonus pay, people
may regard good performance on high- and low-stakes real-world tests

as more important. Finally, in most real-world tests, test takers are free
to choose between different forms of cheating (e.g., copying from an-
other student, use of cheat sheets, searching the Internet). In our studies,
we restricted cheating to using the answers provided at the bottom of
the test. We supervised participants in the three experiments occurring
in classrooms and labs (Experiments 2 to 4). In the online experiment,
we excluded all participants who indicated that they violated instruc-
tions by using a search engine or receiving help from a friend (Experi-
ment 1, 17 of 109 participants). It is thus possible that we excluded the
boldest cheaters from our final sample in Experiment 1. Also, our strict
definition of test cheating may have reduced the ecological validity of
our study.

A limitation to the current study is that we did not measure cheat-
ing at the level of individual participants or at the level of individual
test questions. Although higher scores on tests with answers clearly in-
dicate cheating on the group level, they do not tell us whether individ-
ual participants cheated on individual test questions. Supplementing the
current design with eye movements or, in computerized experiments,
mouse clicks would provide good measures of cheating at the individ-
ual level. Unraveling cheating at the individual level may be an excit-
ing and worthwhile endeavor for future research. Also, obtaining qual-
itative measures of participants’ approaches to and thoughts about the
tests may provide important insights into the reasons and boundary con-
ditions of intact monitoring accuracy after cheating.

In summary, we found no evidence that test cheating harmed learn-
ing and memory processes due to impaired monitoring accuracy. In-
stead, our results demonstrate that monitoring accuracy is robust against
potential biasing effects of cheating on a test.
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